Evaluation of a Novel Compound for Anticancer Therapy

Laura De Natale*, Hannah Smith, Nicola Curtin

200062693, <u>I.de-natale2@ncl.ac.uk</u>, BSc Biochemistry, School of Biomedical, Nutritional and Sport Sciences

1. Background

- DNA double strand breaks (DSBs) are a highly cytotoxic form of DNA damage that can form naturally during DNA replication
- DSBs signal via Ataxia-telangiectasia and Rad3-related (ATR) for cell cycle arrest, and primarily via homologous recombination repair (HRR) for repair
- BRCA1/BRCA2 are key components of HRR and are commonly mutated in cancer
- When HRR is defective, e.g. in BRCA-deficient cells, a back-up pathway called microhomology-mediated end joining (MMEJ) is used

2. Aim and Hypothesis

Aim: To evaluate the cytotoxicity of a novel anti-cancer drug (Compound X), that targets the MMEJ pathway, as a single agent and in combination with a known ATR inhibitor (VE-821) on wildtype (WT) and BRCA2 deficient (B2-) human colorectal adenocarcinoma (DLD1) cells

Hypothesis:

- MMEJ inhibitors cause DNA damage accumulation which activates ATR
- MMEJ inhibition preferentially kills cells lacking HRR (B2-)
- ATR inhibitors are synergistic with MMEJ inhibition to kill cells

3. Methods

A. Measurement of DNA Damage by Immunofluorescence

Following cell culture, seeding and drugging...

Drug or control for 48hrs

Ab incubation (specific

to primary Ab) then wash

C. Measurement of Cell Survival by Colony Formation

then wasł

Seed cells at low density

and run at 170\

Fresh medium for 10 days

Fix, stain and count colonies

C. Compound X preferentially kills HRR-defective cells and has modest synergy with ATR inhibitor

and WT cells so this concentration was used in combination experiments

B2- cells were more sensitive to Compound X than WT cells as they rely on MMEJ

Figure 6: Mean cell survivals with Compound X single agent vs VE-821 + X combination. Colony counts from three single agent X and VE-821 + X combination clonogenic assay repeats with DLD1 WT and B2cells were used to calculate mean cell survivals (% control) at different Compound X concentrations and

Table 1: Table showing potential sensitisation. Mean LC50 and cell survival at 3 μ M X values determined from three DLD1 WT and B2- combination clonogenic assay repeats. Standard error of the

	WT cells	B2- cells
LC50 X (μM)	9.03 ± 0.73	2.24 ± 0.33
LC50 X (μM) + 1 μM VE-821	9.18 ± 0.24	2.06 ± 0.74
Fold potentiation	0.98	1.09
% survival at 3 μM X	61.67 ± 13.04	38.69 ± 4.31
% survival at 3 μM X + 1 μM VE-821	47.98 ± 8.16	37.69 ± 7.88
Fold potentiation	1.29	1.03

• VE-821 only sensitised WT cells to sX at concentrations < 3 μM Would expect greater sensitisation for WT cells as HRR can

Figure 5: Blot from N=1 western blot repeat. pCHK1 levels determined using